inner product $\cdot $

Computes

\begin{displaymath}
z_{i_1,\ldots,i_{r_x-1},j_1,\ldots,j_{r_y-1}} =
\sum_k x_{...
..._{a-1},k,i_{a+1}\ldots,i_{r_x-1}}
y_{j_1,\ldots,j_{r_y-1},k},
\end{displaymath}

where $a$ is the given axis, and $r_x$ and $r_y$ are the ranks of $x$ and $y$ respectively.